If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+7p-4=0
a = 1; b = 7; c = -4;
Δ = b2-4ac
Δ = 72-4·1·(-4)
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{65}}{2*1}=\frac{-7-\sqrt{65}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{65}}{2*1}=\frac{-7+\sqrt{65}}{2} $
| 7+16g=9 | | 10(2n+1)-6=20(n-1+12 | | 1.6=6.1-0.9x | | m-73=8 | | (c+5/4)=6 | | m–73=8 | | 3x^2+27x+1=0 | | h/2=2.5 | | 2(3t+2)=2(7t-4) | | 6(x-4)+7=-9 | | -6p+7=3(2p-3-4(-10+4p) | | z+14=17 | | 60÷4=2m | | 6x+20=2x+4.x | | 10=2(t-3) | | t/3=1.02 | | 3.4=b/2 | | 15-1/2x=30 | | -a-14a=15 | | 4(5+2x)-5=(3x7+7) | | 2(x-1)=2(5x-8)+6x | | 13=z/3 | | 2(5-m)/4=m+7 | | 9-(y-2)=12 | | 2.7=j-6 | | x/(10+x)=0.1,x | | 2.7=j–6 | | -16=y/4 | | (s+4)/2=3 | | 9/16=p13/16 | | √(x+121)+11=x | | 3s=16.11 |